(-1)-Enumeration of Self-Complementary Plane Partitions
نویسنده
چکیده
Abstract. We prove a product formula for the remaining cases of the weighted enumeration of self–complementary plane partitions contained in a given box where adding one half of an orbit of cubes and removing the other half of the orbit changes the sign of the weight. We use nonintersecting lattice path families to express this enumeration as a Pfaffian which can be expressed in terms of the known ordinary enumeration of self–complementary plane partitions.
منابع مشابه
(−1)–enumeration of Plane Partitions with Complementation Symmetry
We compute the weighted enumeration of plane partitions contained in a given box with complementation symmetry where adding one half of an orbit of cubes and removing the other half of the orbit changes the weight by −1 as proposed by Kuperberg in [7, pp.25/26]. We use nonintersecting lattice path families to accomplish this for transpose–complementary, cyclically symmetric transpose–complement...
متن کاملA Schur function identity related to the (-1)-enumeration of self-complementary plane partitions
We give another proof for the (−1)–enumeration of self-complementary plane partitions with at least one odd side-length by specializing a certain Schur function identity. The proof is analogous to Stanley’s proof for the ordinary enumeration. In addition, we obtain enumerations of 180◦-symmetric rhombus tilings of hexagons with a barrier of arbitrary length along the central line.
متن کاملOn refined enumerations of totally symmetric self-complementary plane partitions I
Abstract In this paper we give Pfaffian expressions and constant term identities for three conjectures (i.e. Conjecture 2, Conjecture 3 and Conjecture 7) by Mills, Robbins and Rumsey in the paper “Self-complementary totally symmetric plane partitions” J. Combin. Theory Ser. A 42, 277–292) concerning the refined enumeration problems of totally symmetric self-complementary plane partitions. We al...
متن کاملTotally Symmetric Self-Complementary Plane Partitions and Quantum Knizhnik-Zamolodchikov equation: a conjecture
We present a new conjecture relating the minimal polynomial solution of the level-one U q (sl(2)) quantum Knizhnik-Zamolodchikov equation for generic values of q in the link pattern basis and some q-enumeration of Totally Symmetric Self-Complementary Plane Partitions.
متن کاملOpen boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of symmetric plane partitions
We propose new conjectures relating sum rules for the polynomial solution of the qKZ equation with open (reflecting) boundaries as a function of the quantum parameter q and the τ -enumeration of plane partitions with specific symmetries, with τ = −(q + q). We also find a conjectural relation à la Razumov-Stroganov between the τ → 0 limit of the qKZ solution and refined numbers of Totally Symmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 12 شماره
صفحات -
تاریخ انتشار 2005